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PKCS#11 defines a widely adopted API for cryptographic tokens [10]. It provides access
to cryptographic functionalities while providing some security properties. More specifically, the
value of keys stored on a PKCS#11 device and tagged as sensitive should never be revealed
outside the token, even when connected to a compromised host. Unfortunately, PKCS#11 is
known to be vulnerable to attacks that break this property [1, 4, 5]. A recent work [1] has
shown that many existing commercially available devices are vulnerable to these attacks; the
secured ones, instead, prevent the attacks by drastically reducing functionalities. However, it
has been shown that the API can be ‘patched’ without necessarily cutting it down so much
[1, 3, 5, 6, 7, 8]. In [3] we have defined a simple imperative programming language, suitable to
code PKCS#11 APIs for symmetric key management and we have presented a type system to
statically enforce API security. We have then applied the type system to validate fixes proposed
in the literature and a new one based on key-diversification [2].

We are presently extending the type system of [3] so to be applicable to real devices. The
extension is being implemented in the opencryptoki simulator [9] in order to provide a proof-of-
concept that the firmware of real devices might benefit of this kind of verification. In fact, even
if we have never had access to the firmware source code of real devices, we can expect that the
difficulty of type-checking it is comparable to the one of type-checking opencryptoki C source
code. A full presentation of this work will be given at the ASA workshop, right after CSF.
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